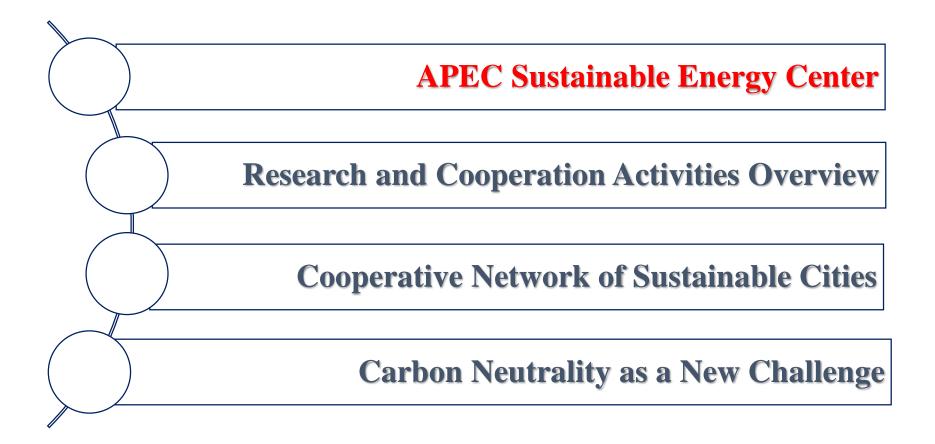


Contribution of APSEC and of the APEC Cooperative Network of Sustainable Cities to promoting green, digital and inclusive cities


Prof. Zhu LI, President, APEC Sustainable Energy Center (APSEC) Prof. Steivan DEFILLA, President Assistant, APSEC, Tianjin, China

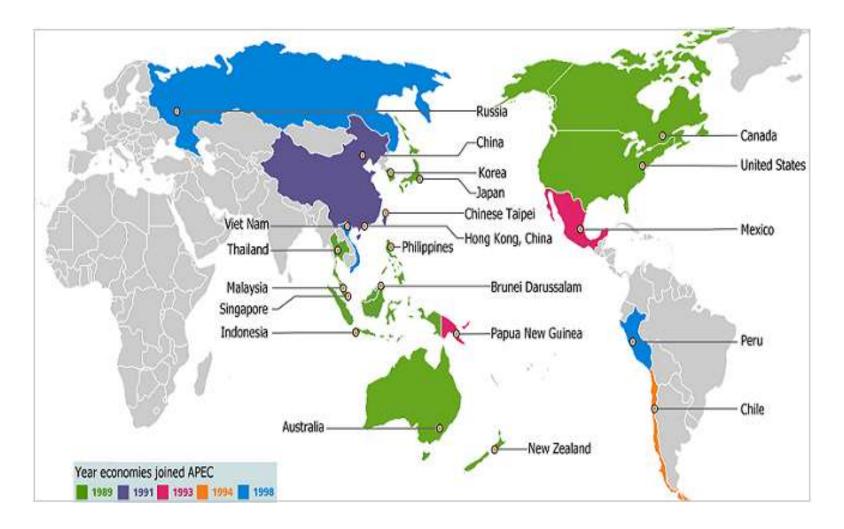
Building the Green, Digital and Inclusive City of the 21st Century. Online Conference, 11 – 12 January 2024 Copyright © 2023 APSEC

APEC Sustainable Energy Center APSEC

APEC Sustainable Energy Center (APSEC) was established at the 11th APEC Energy Ministerial Meeting in 2014, and mentioned in the 22nd APEC Leaders' Declaration. It is a major achievement of the Chinese government responding positively to the initiative of APEC leaders to participate in energy cooperation in APEC region.

APSEC Mission

- 1. To promote pragmatic cooperation on sustainable energy development among APEC economics;
- 2. To act as National Energy Administration's think-tank on conducting strategic research and international cooperation in the field of sustainable energy development

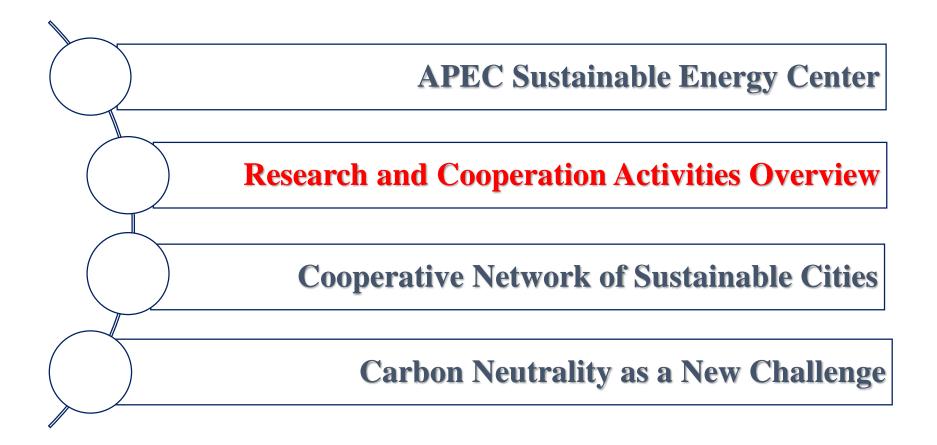

CET Pillar Program Clean Energy Technologies for the Future

CNSC Pillar Program Cooperative Network of Sustainable Cities

ETS Pillar Program Energy Transition Solutions

Events: Two Workshops The Annual Forum

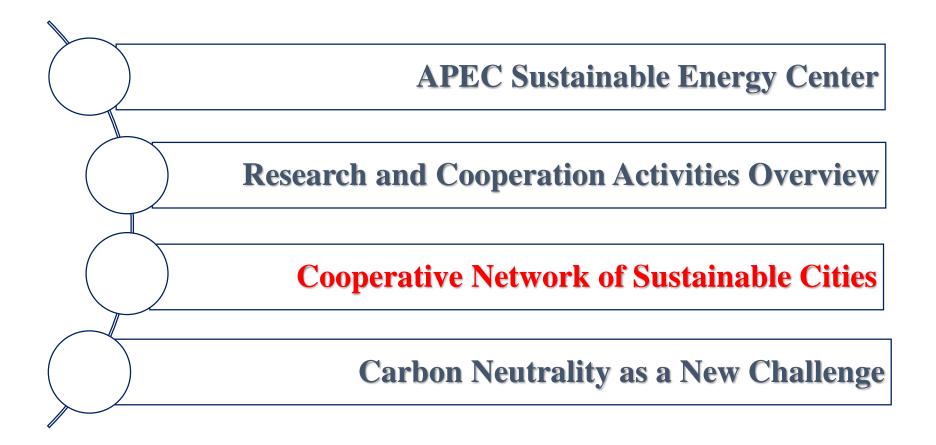
Asia Pacific Economic Cooperation (APEC)

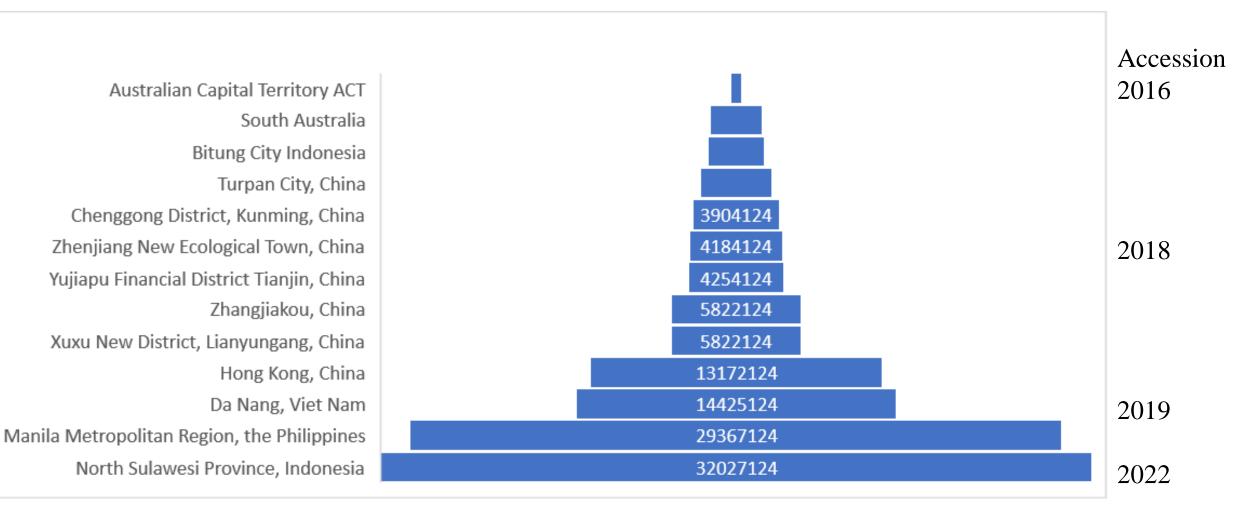

Created in 1989 in Canberra 21 member economies

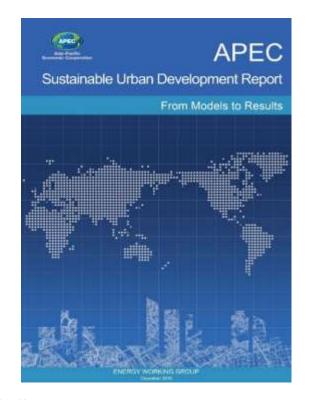
38% of world population
42% of global terrestrial surface
47% of world trade
60% of global GDP
62% of global CO2 emissions

Rotating annual presidency APEC-Secretariat in Singapore

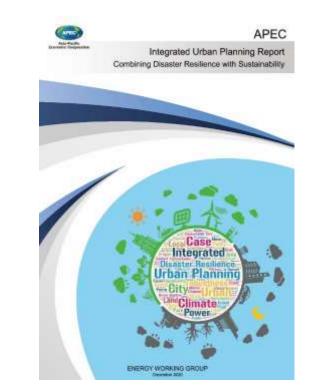
Energy Working Group with several Sub-groups and two Research Centers: APSEC in China and APERC in Japan


Research and Cooperation Activities Overview


ZHU Li, President, APEC Sustainable Energy Center (APSEC), Tianjin, China

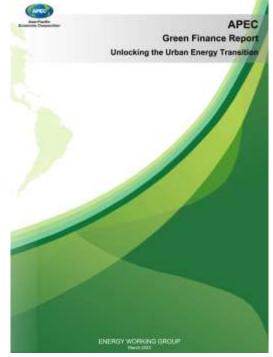


Cumulated population of CNSC cities 2016 - 2022



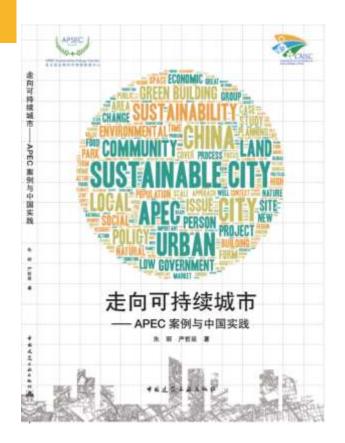
CNSC Research Reports (in English language)

APEC Sustainable Urban Development Report – From Models to Results https://www.apec.org/Publications/2019/04/A


PEC-Sustainable-Urban-Development-Report---From-Models-to-Results

APEC Integrated Urban Planning Report – Combining Disaster Resilience with Sustainability

https://www.apec.org/Publications/2021/03/APEC -Integrated-Urban-Planning-Report



APEC Green Finance Report – Unlocking the Urban Energy Transition

https://www.apec.org/publications/202 3/03/apec-green-finance-reportunlocking-the-urban-energy-transition

CNSC Research Reports (Chinese Language)

APEC可持续城市 低碳能源系统形式与优秀实践

《APEC城市能源转型方案及实现路径研究报告》

天津大学 (APEC 可持续能源中心) 2022 年 12 月

Towards Sustainable Cities – APEC Cases and Chinese Practices Chinese publication at China Architecture & Building Press (ISBN 978-7-112-23799-9) Research on Forms of Low-Carbon Energy System and Best Practices for APEC Sustainable Cities <u>The English version:</u> <u>https://www.apec.org/publications/2020/09/research-on-forms-of-low-carbon-energy-system-and-best-practices</u>

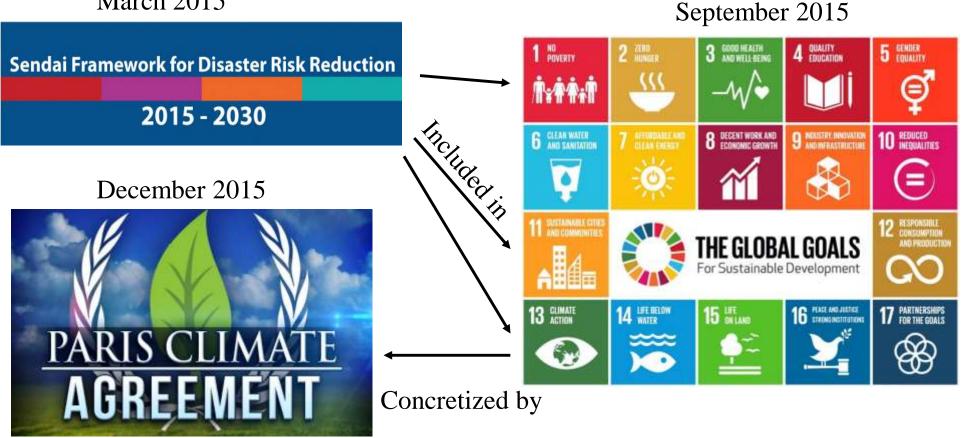
Research Report of APEC Urban Energy Transition Solutions and Implementation Path

Background: Relevant APEC Policy Guidelines

2014: "We aspire to the goal of doubling the share of renewables in the APEC energy mix, including in power generation, from 2010 levels by 2030".

Two Quantitative Aspirational APEC Energy Goals

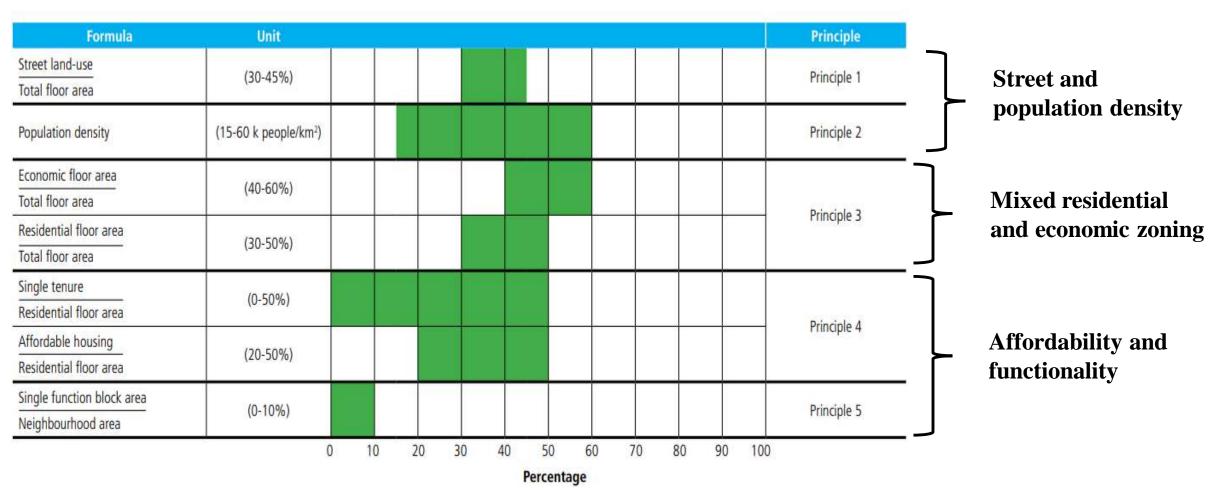
+ creation of the APEC Sustainable Energy Center (2014)



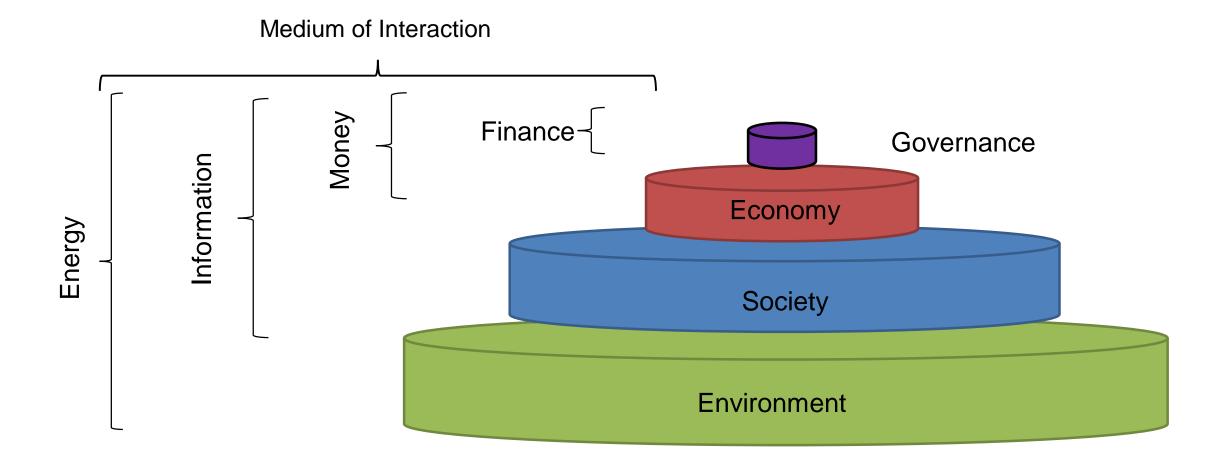
2014 AMM: "We endorse the APEC Cooperation Initiative for Jointly Establishing an Asia-Pacific Urbanization Partnership".

Relevant UN Frameworks 2015

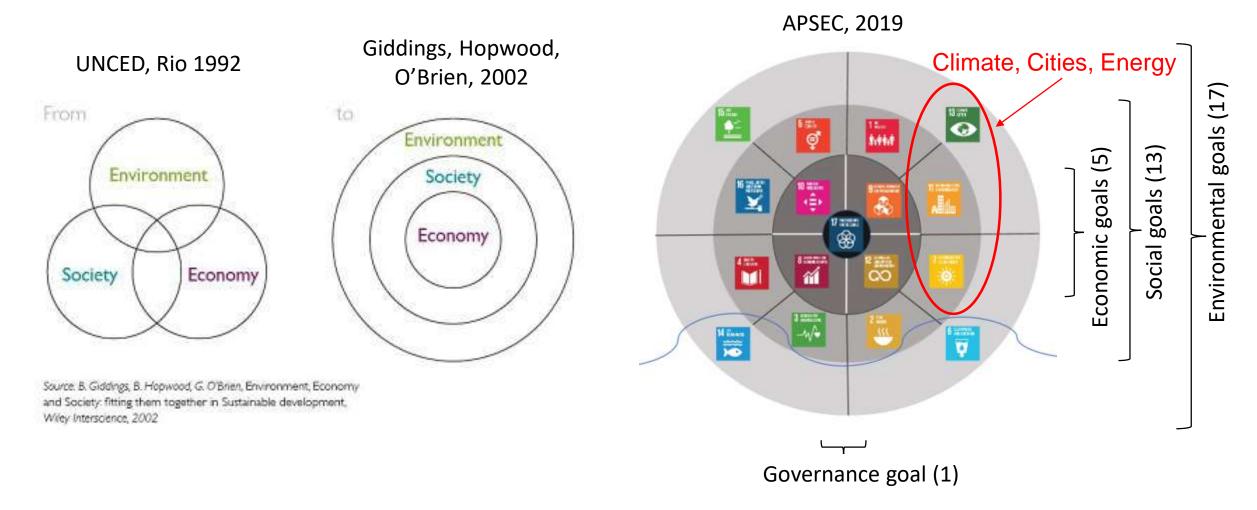
March 2015



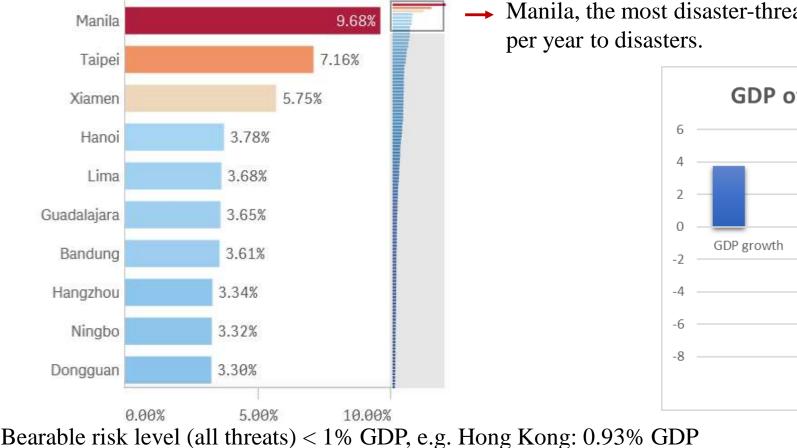
Five Principles of Urban Planning (UNHABITAT, 2015)

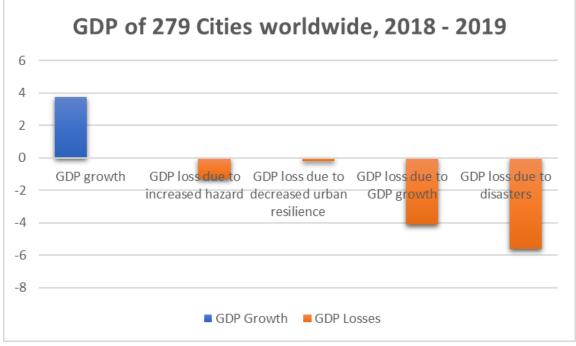

https://unhabitat.org/sites/default/files/download-manager-

files/A%20New%20Strategy%20of%20Sustainable%20Neighbourhood%20Planning%20Five%20principles.pdf

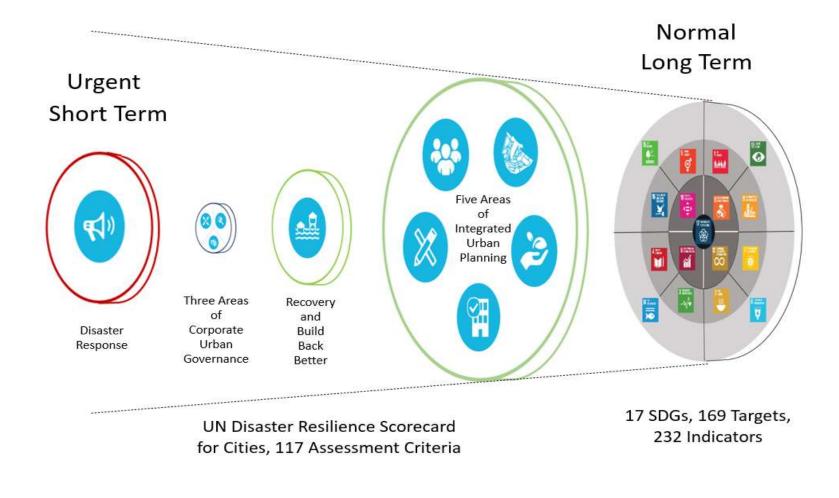


Defining Speres by means of their Medium of Interaction


Shaping the Evolution of Sustainability Concepts



Detailed Analysis of Disasters striking APEC Cities



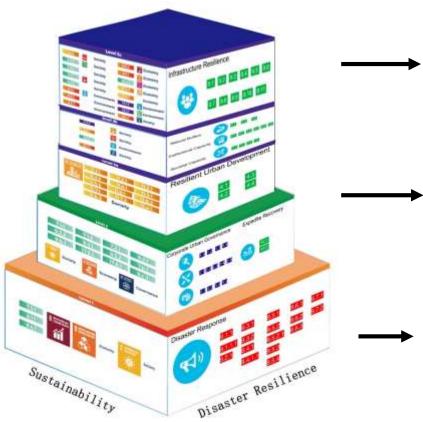
 Manila, the most disaster-threatened APEC city, is losing 9.68% GDP per year to disasters.

Integrating Disaster Resilience (DR) with SDGs: DR takes the role of instrument to attain SDGs

Integrating Systemstheoretical elements:

SDGs = objectives or targets

To reach n independent targets you need at least n independent instruments ("decision variables")


SDGs do not have more than 75 instruments for approx. 160 targets

Disaster Resilience provides for 117 instruments to attain the SDG targets

Helping Cities to improve Data Collection

APEC CityStats

Commitment level 3 (large cities): Implementing and evaluating local action plan

 Objective: Allowing large APEC cities to make in-depth transformation towards integrated sustainable development and disaster resilience, using data from all major urban areas

Commitment level 2 (medium-sized cities): Local 2050 vision, 2030
targets, elaborating integrated holistic (sustainability + disaster resilience) local action plan

Objective: Allowing middle-sized APEC cities to achieve rapid progress, driven by key areas: **Energy, Industrial Innovation, IT**

 Commitment level 1 (small cities): Start improving elementary sustainable development and disaster response and showcase results
 Objective: Allowing APEC communities of any size to participate in data collecting with little data requirement

APEC Project EWG 04 2022A Data Driven Carbon Neutral Disaster Resilient Cities

EWG 04 2022A: Developing a carbon-neutrality vision

- Negotiated one-page document
- inspiring, energizing, hopeful, positive, clear
- The Member's overarching purpose and core values described in one sentence
- The Member's 3 to 5 biggest current sustainability challenges
- The Member's 3 to 5 biggest current disaster threats
- The Member's 3 to 5 most important measures addressing either of the above
- How the Member would react if it became certain that by mid-century the use of carbon-emitting fuels would be impossible without fully neutralizing their emissions.
 - The Member's strengths
 - The Member's weaknesses
 - The opportunities arising for the Member
 - The challenges the Member would have to face

http://apsec.tju.edu.cn/index.php/En/Xiangmu/article/id/51.html

EWG 04 2022A: Convene a Multistakeholder Dialogue

- Participants: North Sulawesi Province and its 4 cities and II municipalities; important stakeholder groups (universities, finance, energy, transport, manufacturing industry, real estate, agriculture and food, low-income population)
- Negotiate the carbon neutrality vision for the Province
- Negotiate three targets for the Province: Energy intensity, emissions intensity, renewables share
- Decide whether the Multistakeholder should become a permanent forum independent of APEC
- Maximum duration: 6 days; hybrid meeting, planned for February 2024

Workshops held in the framework of the annual Asia-Pacific Forum

Sept. 2018: Workshop on Low-Carbon Energy Systems of Sustainable Cities

Sept. 2019: Workshop on Integrated Urban Planning and Low-Carbon Energy Systems

Sept. 2020: Workshop on Energy Resilience Through Urban Renewables (merged with WSC5 due to COVID-19)

Sept. 2021: Workshop on Defining Visions and Targets for Cities' Carbon Reduction

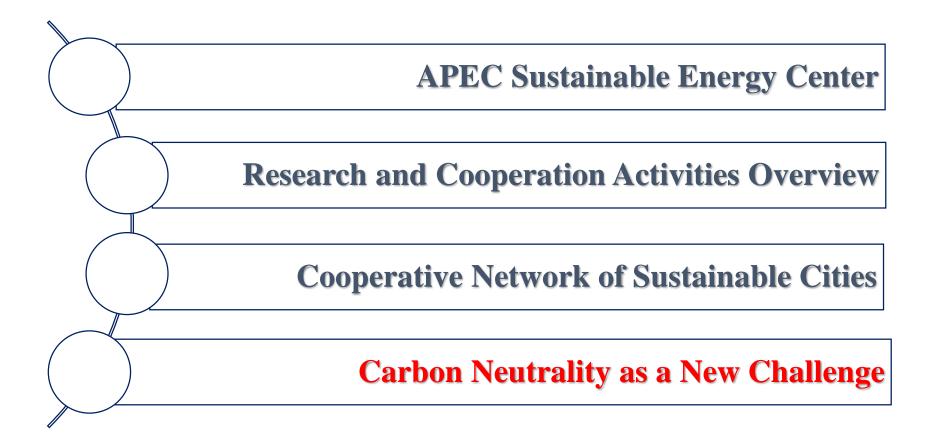
2019.5.22

菲律宾・马尼拉

Workshops on Sustainable Cities WSC 4 – WSC7

Networking

45 presentations at international conferences since 2018, of which



2 interviews in Global Times

"As the Chinese national carbon trading starts today, this can be called a big milestone for China and the beginning of a new era. It shows to the world that China is working seriously toward carbon neutrality. Hopefully, other countries which do not yet have any carbon trading will be inspired to study and follow the Chinese example," Steivan Defilla, President Assistant at APEC Sustainable Energy Center, told the Global Times on Friday.

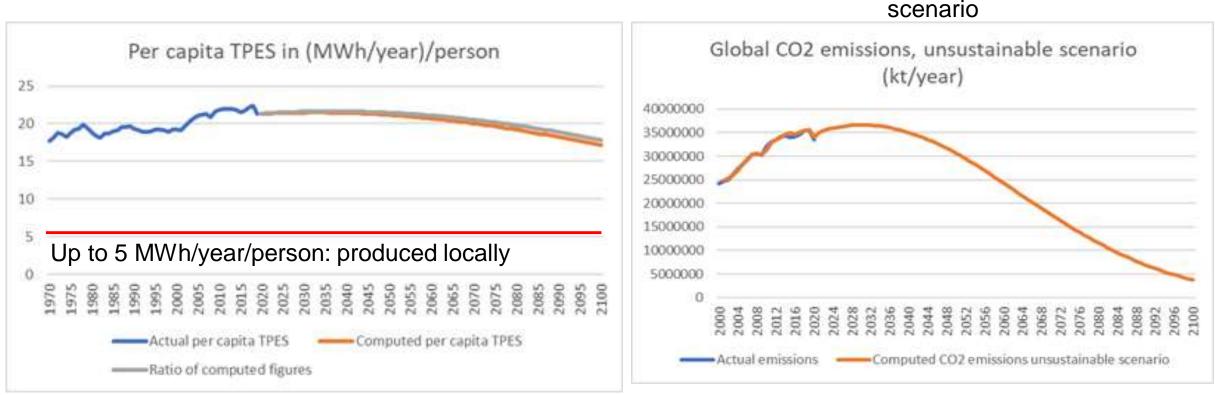
Computed global scenarios up to the year 2100

To be used by cities as global context during the 2020 - 2030 period

Series	2020 – 2030 step
Global Population (both scenarios)	9% increase
Global GDP at constant 2015 USD (both scenarios)	29% increase
Per capita GDP (both scenarios)	18% increase
Total Primary Energy Supply TPES (both scenarios)	10.6% increase
Per capita TPES (both scenarios)	1.5% increase
TPES/GDP (both scenarios)	-14% (decrease)
Total Final Energy Consumption TFC (both scenarios)	+9%
Per capita TFC (both scenarios)	stationary
TFC/GDP (both scenarios)	-15% (decrease)
CO2 emissions (unsustainable scenario)	9% increase
Per capita CO2 emissions (unsustainable scenario)	stationary
Installed renewable generation capacity (sustainable energy scenario)	Multiply by 3
Per capita installed RE capacity (sustainable energy scenario)	Multiply by 2.7
Renewable energy generation (sustainable energy scenario)	Multiply by 2.25
Renewable energy share in TPES (sustainable energy scenario)	Multiply by 2.375
Renewable energy share in TFC (sustainable energy scenario)	Multiply by 2.4
CO2 emissions (sustainable energy scenario)	-26% (decrease) /
Per capita CO2 emissions (sustainable energy scenario)	-33% (decrease)
CO2 intensity of GDP (sustainable energy scenario)	-43% (decrease)
CO2/TPES intensity	-33% (decrease)

Unsustainable Scenario: Carbon neutrality after 2100; cumulated emissions 1810 Gt by 2100 and still increasing

→ Supported by APEC Leaders in 2023


Sustainable Energy Scenario: Carbon neutrality by mid-century Cumulated emissions after 2020: 550 Gt by 2050

Scenario Variables: Two examples

Example 1: Global per capita TPES

Example 2: Global CO2 emissions, unsustainable

Land Area Requirement of Renewable Energies

Renewable energy type (electricity resp. biofuel)	Area [km2]		
Thermal solar farm (empirical)	12		
Photovoltaic solar farm (empirical)	42		
Wind farm (empirical)	167		
Wave farm (Pelamis prototype)	168		
For comparison: Size of the City of Vienna, Austria	414		
Marine current farm (prototype)	2000		
For comparison: Tropical forest (biomass)	2000		
Maize farm (biofuel, empirical)	5000		
Average vegetation (biomass, empirical)	12500		
Hydropower (Δ h=400 m, river basin size)	13500		
Osmotic power (prototype, river basin size)	44000		
Geothermal power (drilling area size)	45000		
For comparison: Land area of the City of Tianjin	11610		

Global average figures

Land Area Requirement for replacing one large coal power plant of 1 GWe by renewable energy

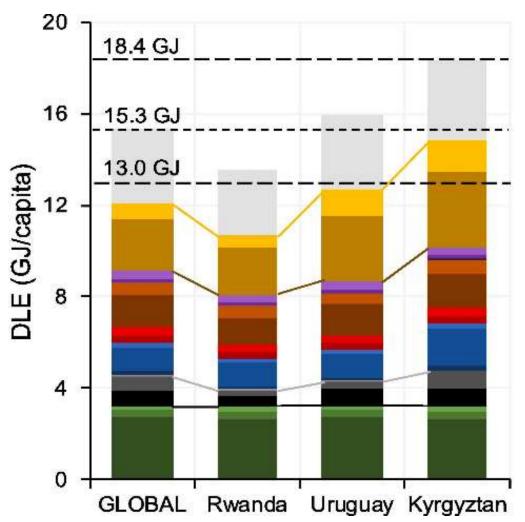
Local conditions may be more favourable

Computed Required PV (m2/person) to satisfy per capita TFC

As a function of PV Potential (PVOUT, horizontal) and TFC (vertical)

APEC Sustainable Energy Center

Daily totals kWh/kWp	2	2.4	2.8	3.2	3.6	4	4.4	4.752	4.8	5.2	5.6	6	6.4
Yearly totals kWh/kWp	731	877	1023	1169	1315	1461	1607	1736	1753	1899	2045	2192	2338
TFC (MWh/person), year 2020													
3.226 The Philippines	23.41	19.51	16.72	14.63	13.00	11.70	10.64	9.85	9.75	9.00	8.36	7.80	7.31
4.017 Papua New Guinea	29.15	24.29	20.82	18.22	16.19	14.57	13.25	12.27	12.14	11.21	10.41	9.72	9.11
5.000 Decent Living Standard	36.28	30.23	25.91	22.67	20.15	18.14	16.49	15.27	15.12	13.95	12.96	12.09	11.34
6.172 Peru	44.78	37.32	31.99	27.99	24.88	22.39	20.35	18.85	18.66	17.22	15.99	14.93	13.99
6.425 Indonesia	46.61	38.85	33.30	29.13	25.90	23.31	21.19	19.62	19.42	17.93	16.65	15.54	14.57
7.464 Viet Nam	54.15	45.13	38.68	33.85	30.09	27.08	24.62	22.79	22.56	20.83	19.34	18.05	16.92
9.015 Mexico	65.40	54.50	46.72	40.88	36.34	32.70	29.73	27.53	27.25	25.16	23.36	21.80	20.44
9.951 Hong Kong, China	72.20	60.17	51.57	45.12	40.11	36.10	32.82	30.39	30.08	27.77	25.79	24.07	22.56
12.646 Thailand	91.75	76.46	65.54	57.34	50.97	45.88	41.71	38.62	38.23	35.29	32.77	30.58	28.67
14.538 China	105.48	87.90	75.34	65.92	58.60	52.74	47.94	44.39	43.95	40.57	37.67	35.16	32.96
15.115 World	109.66	91.38	78.33	68.54	60.92	54.83	49.85	46.15	45.69	42.18	39.16	36.55	34.27
15.645 Chile	113.51	94.59	81.08	70.94	63.06	56.75	51.59	47.77	47.29	43.66	40.54	37.84	35.47
15.889 Malaysia	115.28	96.06	82.34	72.05	64.04	57.64	52.40	48.52	48.03	44.34	41.17	38.43	36.02
18.505 APEC	134.26	111.88	95.90	83.91	74.59	67.13	61.03	56.51	55.94	51.64	47.95	44.75	41.96
21.543 Japan	156.30	130.25	111.64	97.69	86.83	78.15	71.04	65.78	65.12	60.11	55.82	52.10	48.84
21.740 Singapore	157.73	131.44	112.67	98.58	87.63	78.87	71.70	66.39	65.72	60.67	56.33	52.58	49.29
23.040 Chinese Taipei	167.16	139.30	119.40	104.48	92.87	83.58	75.98	70.35	69.65	64.29	59.70	55.72	52.24
26.412 Brunei Darussalam	191.62	159.69	136.87	119.77	106.46	95.81	87.10	80.65	79.84	73.70	68.44	63.87	59.88
27.613 New Zealand	200.34	166.95	143.10	125.21	111.30	100.17	91.06	84.32	83.48	77.05	71.55	66.78	62.61
28.069 Korea	203.65	169.71	145.46	127.28	113.14	101.83	92.57	85.71	84.85	78.33	72.73	67.88	63.64
33.283 Australia	241.48	201.23	172.49	150.92	134.16	120.74	109.76	101.63	100.62	92.88	86.24	80.49	75.46
34.061 Russia	247.12	205.93	176.51	154.45	137.29	123.56	112.33	104.01	102.97	95.05	88.26	82.37	77.23
46.145 United States	334.80	279.00	239.14	209.25	186.00	167.40	152.18	140.91	139.50	128.77	119.57	111.60	104.62
50.010 Canada	362.83	302.36	259.17	226.77	201.57	181.42	164.92	152.71	151.18	139.55	129.58	120.94	113.39


Required percentage of land area to satisfy per capita TFC

					Required		Percentage
					per capita	Required	of land area
TFC/person		Pop density	Pop density	PVOUT	PV area	PV area	required for
(MWh/person)	City	(pers/km2)	(pers/ha)	(kWh/kWp)	(m2/person)	(m2/ha)	PV (%)
7.000	Manila City	43064	431	1376	26.96	11611	116
7.000	Metro Manila	22000	220	1376	26.96	5932	59
9.951	Hong Kong	6400	64	1159	44.48	2847	28
21.740	Singapore	8592	86	1287	89.51	7691	77

The Density Challenge of Cities: beyond a certain population density (e.g. Manila city: 43'000 persons/km2), it requires more than 100% (116%) of the land area of the city to satisfy TFC by PV generation.

Proposed how to address the density challenge: Energy consumption for Decent Living Standards (DLS)

Food Cooking appliances Cold Storage House construction Thermal comfort Illumination Water supply Water heating Waste management Clothes Clothes washing Hospitals Schools Phones Computers ICT networks & data Vehicles Transport infrastructure Other

Either:

Total Energy Needs for DLS: to be satisfied by local renewable electricity production.

18 GJ/year/person= 5MWh/year/person = 570W/person Hence, most APEC economies need 15 to 25 m2/person PV area within the city territory

Or 30% of total land area to be used for local renewable electricity production NB: street network = 30% of area

https://www.sciencedirect.com/science/article/pii/S0959378020307512?via%3Dihub#f0005

Monitoring system for cities

18 data series to monitor approx. 50 ratios related to: local, distant and total accessible renewable electricity generation; energy efficiency; green economy and green finance

$\frac{PAREgeneration}{LPopulation} = \frac{DPPAREgeneration}{DPPAREcapacity} \times \frac{DPPAREcapacity}{DREcapacity} \times \frac{DREcapacity}{LTRMcapacity} \times \frac{LTRMcapacity}{LPopulation}$	Distant (=outside city borders) renewable electricity generation
$\frac{LREgeneration}{LPopulation} = \frac{LREgeneration}{LREcapacity} \times \frac{LREcapacity}{LPVnetarea} \times \frac{LPVnetarea}{LPVgrossarea} \times \frac{LPVgrossarea}{LPopulation}$ $\frac{LREgeneration}{LPopulation} = \frac{LREgeneration}{LGreenVA} \times \frac{LGreenVA}{LGreenEmpl} \times \frac{LGreenEmpl}{LGDP} \times \frac{LGDP}{LPopulation}$	Local renewable electricity generation
$\frac{APPAREgeneration}{LPopulation} = \frac{APPAREgeneration}{LTPES} \times \frac{LTPES}{LGDP} \times \frac{LGDP}{LPopulation}$ $\frac{APPAREgeneration}{LPopulation} = \frac{APPAREgeneration}{AREstorage} \times \frac{AREstorage}{Totalstorage} \times \frac{Totalstorage}{LTFC} \times \frac{LTFC}{LPopulation}$ $\frac{APPAREgeneration}{LPopulation} = \frac{APPAREgeneration}{APPAREgeneration} \times \frac{APPAREcapacity}{LGreenDebt} \times \frac{LGreenDebt}{LGreenEquity} \times \frac{LGreenEquity}{LPopulation}$	Accessible (=local + distant) - PPA contracted renewable electricity generation

"Joining Hands Toward Sustainable Energy Development in the Asia-Pacific Region."